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Abstract. Piezoelectric fiber composites have several potential applications in aerospace industry due the high level  
design  requirements  that  can  be  provided  for  this  kind  of  material  in  applications  such  as  structure  health  
monitoring, precision positioning and vibration control or suppression. Difficulties in fiber manufacturing techniques  
and behavior prediction are the main obstacles to the practical implementation of this technology. In this work one  
procedure for determining effective properties of one ply made of unidirectional fibers from individual properties of  
the constituent materials and composite characteristics is presented and discussed. The procedure is based in the  
modeling of a Representative Volume Element (RVE) or a unit cell by finite element method. The RVE is analyzed  
under several loading and boundary conditions in order to evaluate of the effective material coefficients (elastic,  
dielectric end piezoelectric). The results are discussed and compared with analytical and numerical results presented  
by other researchers.
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1. INTRODUCTION 

Active fiber composites have been largely studied during the last years applied as actuator and/or sensor in smart 
structures with large potential use in aerospace industry. Several approaches have been studied in order to describe the 
electromechanical behavior of the piezoelectric coupling in composite materials. These approaches are experimental, 
analytical, numerical or hybrid. Frequently, authors apply more than one approach to obtain a better evaluation of the 
material coefficients and electromechanical behavior.

Several researches like described by Chan and Unsworth (1989) as well as by Smith and Auld (1991) are based in 
analytical approaches that are limited in terms of loading cases in which they can be applied. Researches like described 
by Dunn and Taya (1993) employs micro-mechanical theory coupled to the electro-elastic solution study ellipsoidal 
inclusions into a infinite piezoelectric medium. Bisegna and Luciano (1996 and 1997) generalize the Hashin-Shtrikman 
principles in order to determine the limits of all piezoelectric properties of selected materials. Rodriguez-Ramos et al. 
(2001) and Bravo-Castillero et al. (2001) apply the asymptotic homogenization to composites (piezoelectric or not) with 
fibers in square arrangement. Guinovart-Díaz et al. (2001 and 2002) and Sevostianov (2001) also apply the asymptotic 
homogenization, but to models with hexagonal symmetry of fibers and random distribution, respectively,  both with 
good agreement.

Finite element techniques using a representative volume element (unit cell) were employed by Gaudenzi (1997) to 
obtain the properties for piezo-composite patches applied on metallic plates. Poizat and Sester (1999) show how to 
obtain two effective piezoelectric coefficients (longitudinal and transverse). Petterman and Suresh (2000) use unit cell 
models applied to 1-3 piezo-composites. Paradies e Melnykowycz (2007) study the influence of interdigital electrodes 
over mechanical properties of PZT fibers.

Melnykowycz  et  al. (2006)  characterize  the  performance  of  intelligent  composite  materials  reinforced  with 
fiberglass and integrated PZT fibers.

The research of Kar-Gupta and Venkatesh (2005, 2007a and 2007b) is about the influence of fiber distribution in 1-3 
piezoelectric  composites  considering  both,  fiber  and  matrix,  with  piezoelectric  properties.  Analytical  techniques 
discussed can not consider fiber distribution. Therefore, finite element analysis are presented and discussed. Berger et  
al. (2005) evaluate effective material properties of piezoelectric composites using analytical and numerical techniques.

Azzouz et al. (2001) improve the properties of MIN6 element (three nodes aniso-parametric element) to take into 
account the modeling of AFC (active fiber composite) and MFC TM (macro fiber composite). Tan and Vu-Quoc (2005) 
present  a  solid-shell  element  formulation  to  model  active  composite  structures  considering  large  deformation  and 
displacements. The element has displacement and electrical degrees of freedom. The authors ensure the efficiency and 
precision in the analysis  of multilayer  composite structures  submitted to large deformation,  including piezoelectric 
layers.

Panda and Ray (2006, 2008) include temperature dependence to the piezoelectric composite properties. The studied 
structure is a composite plate with piezoelectric composite patches.

Dent  et al. (2005) identify positive and negative characteristics of PZF fibers for use in piezoelectric composites 
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through extensive evaluation of commercially available fibers due to their morphology,  micro-structure and phase-
composition.

Paik et al. (2007) employ direct numerical simulation – a simulation using detailed modeling, incorporating every 
micro-structure – justifying that unit cell models are limited to predict the behavior of piezoelectric fiber composites.

In  this work one procedure  for  determining effective  properties  of  one ply made of  unidirectional  fibers  from 
individual  properties  of  the  constituent  materials  and  composite  characteristics  is  presented  and  discussed.  The 
procedure is based on the modeling of a RVE (unit cell) by finite element method. The RVE is analyzed under several  
loading  and  boundary  conditions  in  order  to  evaluate  the  effective  material  coefficients  (elastic,  dielectric  end 
piezoelectric).  All analysis were carried using the software ANSYS®.  Two different  fiber arrangement analysis  are 
presented, square and hexagonal, and the advantages/disadvantages of each model are discussed. There are RVE chosen 
specifically  for  some analysis,  in order  to make possible  the use of  suitable boundary conditions  to  represent  the 
periodicity of the unit cell.

2. BACKGROUND

2.1. Representative volume element

According to the fiber arrangement for periodic composites, a RVE can be chosen in such a way that with the 
appropriated boundary conditions it can represent the behavior of the whole composite. Figure 1(a) shows a composite 
with unidirectional fibers in hexagonal arrangement and fig. 1(b) shows the correspondent unit cell (RVE). The same 
idea can be used for other arrangements. For example to a square arrangement the unit cell is the fiber centered in a 
cubic portion of matrix as showed in fig. 2(a).

The fig. 2(a) also presents the designation given to the faces of RVE, adopted to help the explanation about loading 
and boundary conditions. According to its location, the faces of the RVE are designated as X+, X-, Y+, Y-, Z+ and Z-.  
In all analysis the fiber is continuous and orientated along the z-axis.

(a) (b)

Figure 1. (a) Composite with unidirectional fibers in hexagonal arrangement; (b) correspondent unit cell

(a) (b)

Figure 2. (a) Square arrangement unit cell; (b) Correspondence between opposite sides

Considering two opposite point, A and B, as showed in fig. 2(b) and other set of opposite points, C and D, their 
displacements,  ui, respecting the periodicity of the RVE can be written in terms of the average unit cell strain (Sij) as 
(Berger et al., 2005):
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u i
A=u i

B S ij  x j
A−x j

B (1)

u i
C=ui

D S ij x j
C−x j

D (2)

The same relations are also valid to the electrical degrees of freedom. Subtracting both equations and having in 
mind that the average Sij is the same in both equations and xA – xB = xC – xD (as can be seen in fig. 2(b)), the constraint 
equation can be rewritten as following, respectively to displacement and electrical potential degrees of freedom.

u i
A−u i

C=ui
B−ui

D (3)

A−C=B−D (4)
 
. Where  φ is the electrical  potential correspondent to the node indicated by the superscript index. The last two 

equations represents a parallelism condition between the sides AC and BD. This condition must be applied for each pair 
of nodes in opposite sides of the unit cell (in vertical and horizontal directions) and must be repeated along the depth of 
the cell.  In  the analysis presented it  is not necessary to specify these conditions for all the analyzed cases because 
sometimes  the  displacement  and  electrical  boundary  conditions  already  ensures  this  parallelism  restriction.  It  is 
interesting to avoid the application of this conditions because there is a large number of equations that must be input. 
Automatic procedures to search opposite nodes and applying restrictions must be used. In the loading cases involving 
shear forces this procedure cannot be avoided, and the constraint equations has to be used in the sides submitted to the 
shear loading.

2.2. Piezoelectric composites

Piezoelectric composites are designated by two numbers representing how many dimensions are considered infinite 
length.  The first number is referred to  the fiber,  for example, 1 (one) represents continuous fiber and 0 (zero) for 
chopped fiber. The second number refers to the matrix. If  the matrix is considered of “infinite size” over all  three 
coordinated directions it receives the number 3. In this work composites with continuous unidirectional fibers with a big 
number of plies (thick plates) are considered, or using the proper designation, 1-3 composites.

Piezoelectric problems are those one which an electrical potential gradient cause mechanical strains, as well as 
mechanical  strains induces an electrical  potential. The material properties (material coefficient  matrix) for this case 
must include the dielectric coefficients and mechanical-electrical coupling coefficients (the piezoelectric coefficients), 
besides  the  usual  mechanical  parameters.  Therefore,  the  constitutive  equations  which  represent  the  complete 
electromechanical behavior can be described through the following system of equations, written in matrix notation:

 {{T }
{D}}=[ [C ] [e ]

[e ]T −[]]{ {S }
−{E }} (5)

Where  {T},  {S},  {E}  are,  respectively,  the  stress,  strain  and  electric  potential  fields,  {D}  is  the  electrical 
displacement field, [C] is the fourth order elasticity tensor, [ε  ] are the dielectric constants and [e] the piezoelectric 
modulus.  The  superscript  T means  the  transpose  of  the  matrix  Expanding  the  matrices  and  applying  symmetry 
conditions for 1-3 piezoelectric composites the Eq. (5) can be written as:

{
T 11

T 22

T 33

T 12

T 23

T 31

D1

D2

D3

}=[
C11 C12 C13 0 0 0 0 0 e13

C12 C11 C13 0 0 0 0 0 e13

C13 C13 C33 0 0 0 0 0 e33

0 0 0 C 66 0 0 0 0 0
0 0 0 0 C44 0 0 e15 0
0 0 0 0 0 c44 e15 0 0
0 0 0 0 0 e15 −11 0 0
0 0 0 0 e15 0 0 −11 0

e13 e13 e33 0 0 0 0 0 −33

]{
S 11

S 22

S 33

S 12

S 23

S 31

−E1

−E2

−E3

} (6)
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Through finite element analysis of the unit cell under prescribed loading cases, average values for stress, strain, 
electric flux density and electric fields can be evaluated. These average values are used to calculate effective material 
coefficients according to the following system of equations:

{{T }
{D}}=[[C ]eff [e ]eff

[e ]eff
T −[]eff ]{ {S }

−{E}} (7)

Where the upper bar means the average value estimated over the unit cell volume and the subscript eff means the 
effective value. The average values are given by:

T ij=
1
V ∫T ij dV (8a)

S ij=
1
V ∫ S ij dV (8b)

Di=
1
V ∫Di dV (8c)

E i=
1
V ∫ E i dV (8d)

Where V is the unit cell volume. Using the finite element approach, the average values can be post processed by:

T ij=
1
V ∑n=1

nel

T ij
n V n (9a)

S ij=
1
V ∑n=1

nel

S ij
n V n (9b)

Di=
1
V ∑

n=1

nel

Di
nV n (9c)

E i=
1
V ∑n=1

nel

E i
n V n (9d)

Where V is the volume of the unit cell, nel is the number of elements modeling the unit cell, V(n) is the volume of 
the n-th element and T(n), S(n), D(n) and E(n) are the properties evaluated at the n-th element.

3. FINITE ELEMENT MODEL

Several  different  unit  cell  configurations  have  been  used  according  with  the  loading  conditions  and  fiber 
arrangement. For the square arrangement, the high symmetry of the model permitted that the same model, showed in 
fig. 3(a) was used for all loading cases. The hexagonal arrangement uses the model showed in figure 3(b) for cases 
where displacements normal to the cell faces are imposed or nonzero electric potential just in one face. When shear 
loading is involved, the RVE must be extended to have complete symmetry between opposite sides (correspondence 
between opposite nodes) in order to properly apply the constraint equations showed in Eq.(3) and Eq.(4). For shear 
loading in the x-y plane the model is showed in figure 3(c) and for shear in the y-z plane the model is showed in figure  
3(d).

A detailed description of the loading and boundary conditions are presented later, as well as the procedure to obtain 
the effective material coefficients. All finite element analysis were carried out using the software ANSYS®.
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(a) (b) (c) (d)

Figure 3. FE models: (a) square; (b) hexagonal; (c) hexagonal shearing 1-2; (d) hexagonal shearing 2-3

3.1. Material properties

Material properties of both, polymeric matrix and fiber are presented on Table 1. The simulated fiber material is 
ceramic  PZT-5 and the the matrix  uses typical  polymeric values.  Properties of  both materials  were obtained from 
Berger et al. (2005). For the analysis presented here a fiber volume fraction of 55.5% was adopted.

Table 1. Material Properties for fiber and matrix and composite volume fraction

C11 C12 C13 C33 C44 C66 e13 e15 e33 ε11 ε33

x 1010 Pa C / m2 x 10-9 F / m

Fiber 12.1 7.54 7.52 11.1 2.11 2.28 -5.4 12.3 15.8 8.11 7.35

Matrix 0.386 0.257 0.257 0.386 0.064 0.064 - - - 0.0797 0.0797

Fiber volume fraction: 55.5%

3.2. Analysis procedure

There  are  several  combinations  to  the  order  in  which  the  effective  coefficients  can  be  calculated.  It  must  be 
considered first that it is necessary to establish the most reliable results considering the symmetry of the analyzed cell.  
Most accurate results will be get when the loading is applied in fiber direction, here considered as z-direction. Therefore 
the first analysis involve the coefficients that can be determined through the application of displacements or electric 
potential gradients in z-direction.

The prescribed boundary conditions will simplify the set of equations presented in Eq.(6) and it will be possible to 
evaluate the effective material properties.

1st Analysis: effective C13 and C33  calculation
Loading and boundary conditions: normal displacements are set as zero on surfaces X+, X-, Y+, Y- and Z-. A 

positive displacement in Z direction is prescribed on Z+ surface; The electric potential is set to zero on all surfaces.  
These boundary conditions ensure the compatibility of the unit cell. The zero potential condition leads to {E}={0} and 
the condition for averages S11 = S22 = S12 = S23 = S31 = 0 is ensured by the zero displacement restrictions. As just S33 is 
different of zero, first and third lines from Eq.(6) can be used to obtain C13 and C33:

C13
eff=T 11/ S33

(10)

C33
eff=T 33/ S 33 (11)

2nd Analysis: effective e13, e33 and ε 33 calculation
Loading and boundary conditions: normal displacements are set to zero on all surfaces;  Electric potential is set to 

zero on Z- surface and a prescribed electric potential is applied to the Z+ face.  These boundary conditions ensure the 
compatibility of the unit cell. The zero displacement conditions lead to {S}={0} and the applied electrical potential 
ensures a gradient just in Z direction, so from 1st , 3rd and last lines of Eq.(6), respectively the effective values of e13, e33 

and ε 33 can be obtained:

e13
eff=−T 11/ E3 (12)
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e33
eff=−T 33 / E3

(13)

33
eff= D3/ E3 (14)

3rd Analysis: effective C11 and C12 calculation
Loading and boundary conditions:  Normal displacements are set as zero X-, Y+, Y-, Z+ and Z- all surfaces; A 

positive displacement in X direction is prescribed on X+ surface; Electric potential is set to zero on all surfaces. These 
boundary conditions ensure the compatibility of the unit cell. The zero electric potential condition leads to {E} = {0} 
and the condition for averages S22 = S33 = S12 = S23 = S31 = 0 is ensured by the zero displacement restrictions. As just S11 

is different of zero, first and second lines of Eq. (6) can be used to obtain C11 and C12:

C11
eff=T 11/ S11

(15)

C12
eff=T 22 /S 11 (16)

4th Analysis: effective ε11 calculation
Loading and boundary conditions: Normal displacements are set as zero on all surfaces; Electric potential is set to 

zero on X- surface and a prescribed electric potential is applied to the X+ face. These boundary conditions ensure the 
compatibility of the unit cell. The zero displacement conditions leads to {S}={0} and the applied electrical potential 
ensures a gradient just in X direction. From the 7th line in Eq. (6):

11
eff=−D1/ E1 (17)

5th Analysis: effective C66 calculation
Loading and boundary conditions: Z displacements are set as zero on all nodes. All nodes from the center line 

perpendicular to the X-Y plane have the X and Y displacements set to zero. Two opposite nodes belonging to the fiber 
border are changed to cylindrical coordinate system and have their angular displacement constrained in order to avoid 
rigid body rotation. These nodes are in the X-Y plane and make 45° with the coordinate axes. Electric potential is set to 
zero on all surfaces. Shearing forces of same modulus and opposite orientation are applied on the surfaces Y+ and Y- 
with X direction and on X+ and X- surfaces  with Y direction, producing a pure X-Y shear state. Also the parallelism 
conditions deduced in Eqs. (3) and (4) must be applied between the pair of surfaces X+ and X-, and between Y+ and Y- 
surfaces. These boundary conditions ensure the compatibility of the unit cell. As it was forced a pure shear state in X-Y 
plane, only the component S12 from {S} is different of zero. The zero electric potential condition ensures that {E}={0}. 
Therefore from the 4th line in Eq. (6):

C66
eff=T 12 /S12 (18)

6th Analysis: effective e15 and C44 calculation
Loading and boundary conditions: X displacements are set as zero on all nodes. All nodes from the center line 

perpendicular to the Y-Z plane have the Y and Z displacements set to zero. Two opposite nodes belonging to the center 
of the fiber in faces Z+ and Z- (Figure 3(d)) are constrained in Y direction in order to avoid rigid body rotation. Electric 
potential is set to zero on X-, X+, Y- and Y+ surfaces. Shearing forces are applied in the surfaces Y+ and Y- with Z 
direction, same modulus and opposite orientation and on Z+ and Z- surfaces  with Y orientation, producing a pure Y-Z 
shear state. Also the parallelism conditions deduced in Eqs. (3) and (4) must be applied between the pair of surfaces Z+ 
and Z-, and between Y+ and Y- surfaces. These boundary conditions ensure the compatibility of the unit cell. Effective 
ε11 was obtained from Eq. (17). Effective values for C44 and e15 can be obtained from the 5th and 8th lines in Eq. (6):

C44
eff=T 23E2e15

eff / S 23 (19)

e15
eff=−E211D2/ S 23 (20)

 
4. RESULTS

According  to  the  procedure  discussed  above,  the  obtained  results  for  the  properties  involved  in  the  effective 
coefficients  calculation  are  presented  in  Figures  3.  and  4.  for  fibers  with  square  and  hexagonal  arrangement, 
respectively.  The average values are calculated from the finite element results through the set of Eqs. (9a) to (9d). 
Standard finite elements calculations already uses and calculates element average values, as well as individual element 
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volumes, so these equations can easily be post-processed in a commercial finite element code. Eqs. (10) to (20) are used 
to obtain the effective coefficients.

(a) First analysis: respectively T11, T33, and S33

(b) Second analysis: T11, T33, D3 and E3

(c) Third analysis: T11, T22 and S11

(d) Fourth analysis: D1 and E1 (e) Fifth analysis: T12 and S12

(f) Sixth analysis: T23, S23, D2 and E2

Figure 4. Square arrangement: non-zero average fields for each analysis
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(a) First analysis: T11, T33 and S33

(b) Second analysis: T11, T33, D3 and E3

(c) Third analysis: T11, T22, S11

(d) Fourth analysis: D1 and E1 (e) Fifth analysis: T12 and S12

(f) Sixth analysis: T23, S23, D2 and E2

Figure 5. Hexagonal arrangement: non-zero average fields for each analysis

All the results are summarized in the Table 2, where,  the columns designed as (1) and (2) refers to the results 
obtained by Berger et al. (2005), estimated from graphs presented in their paper. (1) refers to analytical results obtained 
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by asymptotic homogenization and (2) numerical results obtained by finite element analysis. The columns designed by 
(3)  and  (4)  summarize  the  coefficients  obtained  by  the  analysis  procedure  presented  in  this  work.  They  refer 
respectively to square fiber arrangement and hexagonal arrangement The values obtained to the effective coefficients 
are compared using analytical results as reference, and the estimated error is presented in the three last columns of 
Table 2, where the first column of errors is taken between the analytical and numerical results presented by Berger et  
al. (2005),  the second between analytical  and square  arrangement  and the third between analytical  and hexagonal 
arrangement..

Table 2. Analytical and numerical results comparison

Coefficient Units (1) (2) (3) (4) Error [%](a) Error [%](b) Error [%](c)

C11

x 1010 Pa

0.95 1.10 1.088 1.068 15.8 14.5 12.4

C12 0.56 0.48 0.465 0.522 14.3 17.1 6.8

C13 0.60 0.60 0.604 0.619 0.0 0.7 3.2

C33 3.50 3.50 3.525 3.521 0.0 0.7 0.6

C44 0.22 0.18 0.215 0.195 18.2 2.3 11.4

C66 0.20 0.16 0.154 0.181 20.0 23.1 9.5

e13

C / m2

-0.26 -0.26 -0.258 -0.269 0.0 0.7 3.5

e15 0.02 0.018 0.0241 0.0164 10.0 20.5 18.0

e33 11.0 11.0 10.86 10.86 0.0 1.3 1.3

ε11
x 10-9 F/m

0.28 0.29 0.284 0.303 3.6 1.4 8.2

ε33 4.20 4.20 4.27 4.27 0.0 1.6 1.6

(1) BERGER et al. (2005) analytical results (estimated from graphs);
(2) BERGER et al. (2005) numerical results with square fiber arrangement (estimated from graphs);
(3) Numerical results presented in this report – square fiber arrangement;
(4) Numerical results presented in this report – hexagonal fiber arrangement.

(a) : Comparing (1) and (2);
(b) : Comparing (1) and (3);
(c) : Comparing (1) and (4).

5. CONCLUSIONS

The  presented  models  had,  in  general,  a  good  agreement  with  analytical  results  obtained  by  the  asymptotic 
homogenization. Numerical results presented here are very similar to results reported by Berger  et al. for the square 
arrangement  of  fibers.  The  applied boundary conditions  and  procedure  analysis  have  been  considered  suitable  for 
analyzing  1-3  piezoelectric  composites.  Adopting  the  same  procedures,  models  to  represent  hexagonal  fiber 
arrangement  are presented.  Using this finite element model, the estimated errors between numerical  and analytical 
results are reduced to less than 12.5% except for the e15 coefficient. This coefficient is strongly dependent on S23 strains, 
so also strongly dependent on boundary conditions applied to reproduce the symmetric behavior of the unit cell. The 
general improvement on quality of results using the hexagonal arrangement instead the square is expected because the 
transverse isotropy hypothesis is fulfilled, which is not the case for square arrangement. It is important to mention that 
the authors have carried out new investigations which will be submitted to publish in the future.
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